Two New Cycloartane Triterpenes from The Leaves of Quercus valiabilis Blume

Li Hong ZHOU^{1,*}, Qi Shi SUN², Yan WANG³

Abstract: Two new cycloartane triterpenes were separated from the leaves of *Quercus valiabilis* Blume. The structures were identified as 4 α ,14 α -dimethyl-9 β ,19-cycloergost-3 α -yl-24-one and 4 α ,14 α -dimethyl-9 β ,19-cycloergost-24(24 $^{\prime}$)-en-3 α -yl-acetate.

Keywords: Quercus valiabilis Blume, triterpene, cycloartane, cycloeucalenol.

The fruit of *Quercus valiabilis* Blume has been used as a kind of chinese traditional medicine. Our investigation on chloroform extract of the leaves of this plant resulted in the isolation of two new cycloartane triterpenes.

Figure 1 The structures of compound 1 and 2

Compound **1** was obtained as colorless needles, and gave a positive Liebermann-Burchard test for triterpenoids. Its IR(KBr $^{\text{V}}$ cm⁻¹) spectrum showed absorptions at 3431(hydroxy group), 1718(carbonyl group), 3040 and 1381(cyclopropyl group). The mass spectrum of compound **1** displayed [M]⁺ at m/z 428 accompanied with diagnostic fragment ions peaks at m/z 300[M-C₈H₁₄O(ringA)]⁺, 285[M-C₈H₁₄O(ringA)-CH₃]⁺and

_

^{*} E-mail:drtwy2@yahoo.com.cn

175[M-C₈H₁₄O(ringA)-C₉H₁₇(side-chain)]⁺, which were similar to those of cycloartane triterpenes. The ¹H NMR and ¹³C NMR data of skeleton of compound **1** were quite similar to those of 3-epicycloeucalenol¹, and the side chain were similar to those of cycloartan-3,24-dione². Thus, compound **1** was determined to be 4 α ,14 α -dimethyl-9 β ,19-cycloergost-3 α -yl-24-one [3-epicycloeucalenyl-24-one], which was confirmed by its DEPT, ¹H-¹H COSY, HMQC and HMBC spectra..

Table 1 ¹³C NMR data of compound 1, compound 2

Carbon	compound 1	Compound 2	
1	26.8	27.5	
2	33.0	30.2	
3	72.3	75.1	
4	41.0	39.9	
5	37.9	39.1	
6	24.5	24.5	
7	24.7	24.8	
8	46.7	47.2	
9	23.1	23.3	
10	30.2	29.9	
11	26.9	26.8	
12	32.9	32.9	
13	45.3	45.3	
14	49.0	49.0	
15	35.3	35.4	
16	28.0	28.1	
17	52.1	52.2	
18	17.7	17.9	
19	26.2	26.5	
20	35.8	36.2	
21	18.1	18.4	
22	30.2	35.0	
23	37.5	31.3	
24	215.4	157.0	
25	40.8	33.8	
26	18.4	22.0	
27	18.3	21.9	
28	19.1	19.2	
29	15.4	15.1	
30	_	106.0	
$OCOCH_3$	_	171.2	
OCOCH ₃	_	21.4	

Compound **2** was also obtained as colorless needles, mp 88~90°C, and gave a positive Liebermann-Burchard test for triterpenoids. Its IR(KBr v cm⁻¹) spectrum showed 1740 (carbonyl group), 1638 and 884 (terminal methylene group) and 3040, 974 (cyclopropyl group). The mass spectrum showed [M]⁺ at m/z 468 accompanied with diagnostic fragment ions peaks at m/z 453[M-CH₃]⁺, 408[M-CH₃COOH]⁺, 300[M-C₁₀H₁₆O₂ (ringA)]⁺, 285[M-C₁₀H₁₆O₂(ringA)-CH₃]⁺ and 175[M-C₁₀H₁₆O₂(ringA)-C₉H₁₇ (side- chain)]⁺, which were similar to those of acetate of cycloartane triterpenes. ¹H NMR and ¹³C NMR data of compound **2** were similar to those of 3-epicycloeucalenol except ring A. It showed a methine signal at δ 2.08 in the ¹H NMR spectrum and δ

21.4, 171.2 in the ^{13}C NMR spectrum, suggesting that it possessed an acetoxy group in ring A. From the above evidence, compound **2** was determined to be 3-epicycloeucalenyl-acetate[4 α ,14 α -dimethyl-9 β ,19-cycloergost-24(24')-en-3 α -yl-acetate]. The structure was further confirmed by deacetylation.

References

- 1. T. Akihisa, Y. Kimura, T. Tamura, Phytochemistry, 1998, 47, 1107.
- 2. B. Talapatra, P. K. Chaudhuri, Phytochemistry, 1983, 22, 2559.
- 3. T. Kikuchi, S. Kadota, K. Tsubono, Chem. Pharm. Bull., 1986, 34, 2479.

Received 2 December, 2002